Analisis Bibliometrik Penelitian Pohon Keputusan untuk Prediksi Kanker Payudara
DOI:
https://doi.org/10.33505/jodis.v7i2.216Keywords:
Bibliometric, Decision Tree, Breast Cancer, PredictionAbstract
The purpose of this paper is to conduct a bibliometric analysis of scientific publications that discuss the use of the decision tree method for breast cancer prediction. A total of 322 documents from Scopus were collected for analysis using bibliometric indicators such as productivity and citations. The bibliometric analysis produces scientific mapping based on the keywords co-occurrence, co-authorship, and co-citation analysis to reflect the conceptual, social, and intellectual structure of the research. The results of the analysis of evolution article found an exponential increase in citations and the number of authors in this study in the period 2005-2023, where China was the dominant country in conducting research. In the thematic map analysis, three research topics were produced, namely the medical field, the computer field and the bioinformatics field. Research topics in the use of the decision tree method for breast cancer prediction are included in the computer field. This study suggests that research on the use of the decision tree method for breast cancer prediction is a research topic that needs to be continuously improved.References
Abbas, S., Jalil, Z., Javed, A. R., Batool, I., Khan, M. Z., Noorwali, A., Gadekallu, T. R., & Akbar, A. (2021). BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized Tree algorithm. PeerJ Computer Science, 7, 1–20. Scopus. https://doi.org/10.7717/peerj-cs.390
Al-Azzam, N., & Shatnawi, I. (2021). Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer. Annals of Medicine and Surgery, 62, 53–64. Scopus. https://doi.org/10.1016/j.amsu.2020.12.043
Alshammari, M., & Mezher, M. (2020). A comparative analysis of data mining techniques on breast cancer diagnosis data using WEKA toolbox. International Journal of Advanced Computer Science and Applications, 11(8), 224–229. Scopus. https://doi.org/10.14569/IJACSA.2020.0110829
Alromema, N., Syed, A. H., & Khan, T. (2023). A Hybrid Machine Learning Approach to Screen Optimal Predictors for the Classification of Primary Breast Tumors from Gene Expression Microarray Data. Diagnostics, 13(4). Scopus. https://doi.org/10.3390/diagnostics13040708
Assegie, T. A., Tulasi, R. L., & Kumar, N. K. (2021). Breast cancer prediction model with Decision Tree and adaptive boosting. IAES International Journal of Artificial Intelligence, 10(1), 184–190. Scopus. https://doi.org/10.11591/ijai.v10.i1.pp184-190
Botlagunta, M., Botlagunta, M. D., Myneni, M. B., Lakshmi, D., Nayyar, A., Gullapalli, J. S., & Shah, M. A. (2023). Classification and diagnostic prediction of breast cancer metastasis on clinical data using Machine Learning algorithms. Scientific Reports, 13(1). Scopus. https://doi.org/10.1038/s41598-023-27548-w
Chen, L., Pan, X., Zhang, Y.-H., Hu, X., Feng, K., Huang, T., & Cai, Y.-D. (2019). Primary tumor site specificity is preserved in patient-derived tumor xenograft models. Frontiers in Genetics, 10(JUL). Scopus. https://doi.org/10.3389/fgene.2019.00738
Chen, X., Zhu, C.-C., & Yin, J. (2019). Ensemble of Decision Tree reveals potential miRNA-disease associations. PLoS Computational Biology, 15(7). Scopus. https://doi.org/10.1371/journal.pcbi.1007209
Chowdhary, C. L., Mittal, M., Kumaresan, P., Pattanaik, P. A., & Marszalek, Z. (2020). An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy C-mean clustering and fuzzy SVM algorithm. Sensors (Switzerland), 20(14), 1–20. Scopus. https://doi.org/10.3390/s20143903
Dobrovska, L., & Nosovets, O. (2021). Development Of The Classifier Based On A Multilayer Perceptron Using Genetic Algorithm And Cart Decision Tree. Eastern-European Journal of Enterprise Technologies, 5(9–113), 82–90. Scopus. https://doi.org/10.15587/1729-4061.2021.242795
El-Nabawy, A., Belal, N. A., & El-Bendary, N. (2021). A cascade deep forest model for breast cancer subtype classification using multi-omics data. Mathematics, 9(13). Scopus. https://doi.org/10.3390/math9131574
Feng, H., Wang, H., Xu, L., Ren, Y., Ni, Q., Yang, Z., Ma, S., Deng, Q., Chen, X., Xia, B., Kuang, Y., & Li, X. (2022). Prediction of radiation-induced acute skin toxicity in breast cancer patients using data encapsulation screening and dose-gradient-based multi-region radiomics technique: A multicenter study. Frontiers in Oncology, 12. Scopus. https://doi.org/10.3389/fonc.2022.1017435
Ferraro, D., Champ, J., Teste, B., Serra, M., Malaquin, L., Viovy, J.-L., de Cremoux, P., & Descroix, S. (2016). Microfluidic platform combining droplets and magnetic tweezers: Application to HER2 expression in cancer diagnosis. Scientific Reports, 6(1), 25540. https://doi.org/10.1038/srep25540
Fusco, R., Di Marzo, M., Sansone, C., Sansone, M., & Petrillo, A. (2017). Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system. European Radiology Experimental, 1(1). Scopus. https://doi.org/10.1186/s41747-017-0007-4
Fusco, R., Granata, V., Raso, M. M., Vallone, P., De Rosa, A. P., Siani, C., Di Bonito, M., Petrillo, A., & Sansone, M. (2021). Blood oxygenation level dependent magnetic resonance imaging (Mri), dynamic contrast enhanced mri and diffusion weighted mri for benign and malignant breast cancer discrimination: A preliminary experience. Cancers, 13(10). Scopus. https://doi.org/10.3390/cancers13102421
Fusco, R., Piccirillo, A., Sansone, M., Granata, V., Vallone, P., Barretta, M. L., Petrosino, T., Siani, C., Di Giacomo, R., Di Bonito, M., Botti, G., & Petrillo, A. (2021). Radiomic and artificial intelligence analysis with textural metrics, morphological and dynamic perfusion features extracted by dynamic contrast-enhanced magnetic resonance imaging in the classification of breast lesions. Applied Sciences (Switzerland), 11(4), 1–16. Scopus. https://doi.org/10.3390/app11041880
Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., & Dhillon, S. K. (2019). Predicting factors for survival of breast cancer patients using Machine Learning techniques. BMC Medical Informatics and Decision Making, 19(1). Scopus. https://doi.org/10.1186/s12911-019-0801-4
Gu, D., Zhao, W., Xie, Y., Wang, X., Su, K., & Zolotarev, O. V. (2021). A personalized medical decision support system based on explainable Machine Learning algorithms and ecc features: Data from the real world. Diagnostics, 11(9). Scopus. https://doi.org/10.3390/diagnostics11091677
Hadi, N. I., Jamal, Q., Iqbal, A., Shaikh, F., Somroo, S., & Musharraf, S. G. (2017). Serum Metabolomic Profiles for Breast Cancer Diagnosis, Grading and Staging by Gas Chromatography-Mass Spectrometry. Scientific Reports, 7(1). Scopus. https://doi.org/10.1038/s41598-017-01924-9
Huang, H., Feng, X., Zhou, S., Jiang, J., Chen, H., Li, Y., & Li, C. (2019). A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinformatics, 20. Scopus. https://doi.org/10.1186/s12859-019-2771-z
Huang, Z., & Chen, D. (2022). A Breast Cancer Diagnosis Method Based on VIM Feature Selection and Hierarchical Clustering Random Forest Algorithm. IEEE Access, 10, 3284–3293. Scopus. https://doi.org/10.1109/ACCESS.2021.3139595
Hussain, L., Huang, P., Nguyen, T., Lone, K. J., Ali, A., Khan, M. S., Li, H., Suh, D. Y., & Duong, T. Q. (2021). Machine Learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response. BioMedical Engineering Online, 20(1). Scopus. https://doi.org/10.1186/s12938-021-00899-z
Jayatilake, S. M. D. A. C., & Ganegoda, G. U. (2021). Involvement of Machine Learning Tools in Healthcare Decision Making. Journal of Healthcare Engineering, 2021. Scopus. https://doi.org/10.1155/2021/6679512
Jiang, N., Tian, T., Chen, X., Zhang, G., Pan, L., Yan, C., Yang, G., Wang, L., Cao, X., & Wang, X. (2021). A Diagnostic Analysis Workflow to Optimal Multiple Tumor Markers to Predict the Nonmetastatic Breast Cancer from Breast Lumps. Journal of Oncology, 2021. Scopus. https://doi.org/10.1155/2021/5579373
Kaur, P., Singh, G., & Kaur, P. (2019). Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Informatics in Medicine Unlocked, 16. Scopus. https://doi.org/10.1016/j.imu.2019.01.001
Kaushik, A. C., Mehmood, A., Wang, X., Wei, D.-Q., & Dai, X. (2021). Globally ncRNAs Expression Profiling of TNBC and Screening of Functional lncRNA. Frontiers in Bioengineering and Biotechnology, 8. Scopus. https://doi.org/10.3389/fbioe.2020.523127
Kaya Keleş, M. (2019). Breast cancer prediction and detection using data mining classification algorithms: A comparative study. Tehnicki Vjesnik, 26(1), 149–155. Scopus. https://doi.org/10.17559/TV-20180417102943
Khan, M. B. S., Atta-Ur-Rahman, Nawaz, M. S., Ahmed, R., Khan, M. A., & Mosavi, A. (2022). Intelligent breast cancer diagnostic system empowered by deep extreme gradient descent optimization. Mathematical Biosciences and Engineering, 19(8), 7978–8002. Scopus. https://doi.org/10.3934/mbe.2022373
Lan, X., Wang, X., Qi, J., Chen, H., Zeng, X., Shi, J., Liu, D., Shen, H., & Zhang, J. (2022). Application of Machine Learning with multiparametric dual-energy computed tomography of the breast to differentiate between benign and malignant lesions. Quantitative Imaging in Medicine and Surgery, 12(1), 810–822. Scopus. https://doi.org/10.21037/qims-21-39
Lei, Y.-M., Yin, M., Yu, M.-H., Yu, J., Zeng, S.-E., Lv, W.-Z., Li, J., Ye, H.-R., Cui, X.-W., & Dietrich, C. F. (2021). Artificial Intelligence in Medical Imaging of the Breast. Frontiers in Oncology, 11. Scopus. https://doi.org/10.3389/fonc.2021.600557
Liang, H., Li, J., Wu, H., Li, L., Zhou, X., & Jiang, X. (2022). Mammographic Classification of Breast Cancer Microcalcifications through Extreme Gradient Boosting. Electronics (Switzerland), 11(15). Scopus. https://doi.org/10.3390/electronics11152435
Li, G., Fang, T., Zhang, Y., Liang, C., Xiao, Q., & Luo, J. (2022). Predicting miRNA-disease associations based on graph attention network with multi-source information. BMC Bioinformatics, 23(1). Scopus. https://doi.org/10.1186/s12859-022-04796-7
Li, J., Zhou, Z., Dong, J., Fu, Y., Li, Y., Luan, Z., & Peng, X. (2021). Predicting breast cancer 5-year survival using Machine Learning: A systematic review. PLoS ONE, 16(4 April). Scopus. https://doi.org/10.1371/journal.pone.0250370
Massafra, R., Latorre, A., Fanizzi, A., Bellotti, R., Didonna, V., Giotta, F., La Forgia, D., Nardone, A., Pastena, M., Ressa, C. M., Rinaldi, L., Russo, A. O. M., Tamborra, P., Tangaro, S., Zito, A., & Lorusso, V. (2021). A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results. Frontiers in Oncology, 11. Scopus. https://doi.org/10.3389/fonc.2021.576007
Min, Y., Wei, X., Chen, H., Xiang, K., Yin, G., & Feng, Y. (2021). Identifying Clinicopathological Risk Factors of the Regional Lymph Node Metastasis in Patients with T1-2Mucinous Breast Cancer: A Population-Based Study. Journal of Oncology, 2021. Scopus. https://doi.org/10.1155/2021/3866907
Mohebian, M. R., Marateb, H. R., Mansourian, M., Mañanas, M. A., & Mokarian, F. (2017). A Hybrid Computer-aided-diagnosis System for Prediction of Breast Cancer Recurrence (HPBCR) Using Optimized Ensemble Learning. Computational and Structural Biotechnology Journal, 15, 75–85. Scopus. https://doi.org/10.1016/j.csbj.2016.11.004
Mudunuru, V. R., & Skrzypek, L. A. (2020). A comparison of artificial neural network and Decision Trees with logistic regression as classification models for breast cancer survival. International Journal of Mathematical, Engineering and Management Sciences, 5(6), 1170–1190. Scopus. https://doi.org/10.33889/IJMEMS.2020.5.6.089
Nahid, A.-A., & Kong, Y. (2017). Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Computational and Mathematical Methods in Medicine, 2017. Scopus. https://doi.org/10.1155/2017/3781951
Nasser, F. K., & Behadili, S. F. (2022). Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers. Iraqi Journal of Science, 63(11), 4987–5003. Scopus. https://doi.org/10.24996/ijs.2022.63.11.34
Nik Ab Kadir, M. N., Yaacob, N. M., Yusof, S. N., Ab Hadi, I. S., Musa, K. I., Mohd Isa, S. A., Bahtiar, B., Adam, F., Yahya, M. M., & Hairon, S. M. (2022). Development of Predictive Models for Survival among Women with Breast Cancer in Malaysia. International Journal of Environmental Research and Public Health, 19(22). Scopus. https://doi.org/10.3390/ijerph192215335
Osman, A. H., & Aljahdali, H. M. A. (2020). An Effective of Ensemble Boosting Learning Method for Breast Cancer Virtual Screening Using Neural Network Model. IEEE Access, 8, 39165–39174. Scopus. https://doi.org/10.1109/ACCESS.2020.2976149
Ozcan, I., Aydin, H., & Cetinkaya, A. (2022). Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer. Asian Pacific Journal of Cancer Prevention, 23(10), 3287–3297. Scopus. https://doi.org/10.31557/APJCP.2022.23.10.3287
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
Pelon, F., Bourachot, B., Kieffer, Y., Magagna, I., Mermet-Meillon, F., Bonnet, I., Costa, A., Givel, A.-M., Attieh, Y., Barbazan, J., Bonneau, C., Fuhrmann, L., Descroix, S., Vignjevic, D., Silberzan, P., Parrini, M. C., Vincent-Salomon, A., & Mechta-Grigoriou, F. (2020). Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nature Communications, 11(1). Scopus. https://doi.org/10.1038/s41467-019-14134-w
Peng, Y., Li, W., & Liu, Y. (2006). A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification. Cancer Informatics, 2, 117693510600200. https://doi.org/10.1177/117693510600200024
Qawqzeh, Y. K., Alourani, A., & Ghwanmeh, S. (2023). An Improved Breast Cancer Classification Method Using an Enhanced AdaBoost Classifier. International Journal of Advanced Computer Science and Applications, 14(1), 473–478. Scopus. https://doi.org/10.14569/IJACSA.2023.0140151
Rexhepaj, E., Jirstrom, K., O’Connor, D. P., O’Brien, S. L., Landberg, G., Duffy, M. J., Brennan, D. J., & Gallagher, W. M. (2010). Validation of cytoplasmic-to-nuclear ratio of survivin as an indicator of improved prognosis in breast cancer. BMC Cancer, 10(1), 639. https://doi.org/10.1186/1471-2407-10-639
Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3(2). Scopus. https://doi.org/10.1007/s42452-021-04148-9
Sakri, S. B., Abdul Rashid, N. B., & Muhammad Zain, Z. (2018). Particle Swarm Optimization Feature Selection for Breast Cancer Recurrence Prediction. IEEE Access, 6, 29637–29647. Scopus. https://doi.org/10.1109/ACCESS.2018.2843443
Sánchez-Calderón, D., Pedraza, A., Urrego, C. M., Mejía-Mejía, A., Montealegre-Páez, A. L., & Perdomo, S. (2020). Analysis of the cost-effectiveness of liquid biopsy to determine treatment change in patients with her2-positive advanced breast cancer in Colombia. ClinicoEconomics and Outcomes Research, 12, 115–122. Scopus. https://doi.org/10.2147/CEOR.S220726
Sansone, M., Fusco, R., Grassi, F., Gatta, G., Belfiore, M. P., Angelone, F., Ricciardi, C., Ponsiglione, A. M., Amato, F., Galdiero, R., Grassi, R., Granata, V., & Grassi, R. (2023). Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Current Oncology, 30(1), 839–853. Scopus. https://doi.org/10.3390/curroncol30010064
Shanbehzadeh, M., Kazemi-Arpanahi, H., Bolbolian Ghalibaf, M., & Orooji, A. (2022). Performance evaluation of Machine Learning for breast cancer diagnosis: A case study. Informatics in Medicine Unlocked, 31. Scopus. https://doi.org/10.1016/j.imu.2022.101009
Smerekanych, S., Johnson, T. S., Huang, K., & Zhang, Y. (2020). Pseudogene-gene functional networks are prognostic of patient survival in breast cancer. BMC Medical Genomics, 13. Scopus. https://doi.org/10.1186/s12920-020-0687-0
Su, F., Gao, Z., Liu, Y., Zhou, G., Cui, Y., Deng, C., Liu, Y., Zhang, Y., Ma, X., Wang, Y., Guan, L., Zhang, Y., & Liu, B. (2022). Integrated Tissue and Blood miRNA Expression Profiles Identify Novel Biomarkers for Accurate Non-Invasive Diagnosis of Breast Cancer: Preliminary Results and Future Clinical Implications. Genes, 13(11). Scopus. https://doi.org/10.3390/genes13111931
Sun, L., He, J., Yin, X., Zhang, Y., Chen, J.-H., Kron, T., & Su, M.-Y. (2018). An image segmentation framework for extracting tumors from breast magnetic resonance images. Journal of Innovative Optical Health Sciences, 11(4). Scopus. https://doi.org/10.1142/S1793545818500141
Thareja, P., & Chhillar, R. S. (2021). Comparative Analysis of Data Mining Algorithms for Cancer Gene Expression Data. International Journal of Advanced Computer Science and Applications, 12(10), 322–328. Scopus. https://doi.org/10.14569/IJACSA.2021.0121035
Tian, J.-X., & Zhang, J. (2022). Breast cancer diagnosis using feature extraction and boosted C5.0 Decision Tree algorithm with penalty factor. Mathematical Biosciences and Engineering, 19(3), 2193–2205. Scopus. https://doi.org/10.3934/MBE.2022102
Wang, K., Li, L., Franch-Expósito, S., Le, X., Tang, J., Li, Q., Wu, Q., Bassaganyas, L., Camps, J., Zhang, X., Li, H., Foukakis, T., Xiang, T., Wu, J., & Ren, G. (2022). Integrated multi-omics profiling of high-grade estrogen receptor-positive, HER2-negative breast cancer. Molecular Oncology, 16(12), 2413–2431. Scopus. https://doi.org/10.1002/1878-0261.13043
Xie, T., Wang, Z., Zhao, Q., Bai, Q., Zhou, X., Gu, Y., Peng, W., & Wang, H. (2019). Machine Learning-based analysis of MR multiparametric radiomics for the subtype classification of breast cancer. Frontiers in Oncology, 9(JUN). Scopus. https://doi.org/10.3389/fonc.2019.00505
XI, G., HE, J., KANG, D., XU, S., GUO, W., FU, F., LIU, Y., ZHENG, L., QIU, L., LI, L., WANG, C., & CHEN, J. (2021). Nomogram model combining macro and micro tumor-associated collagen signatures obtained from multiphoton images to predict the histologic grade in breast cancer. Biomedical Optics Express, 12(10), 6558–6570. Scopus. https://doi.org/10.1364/BOE.433281
Xiong, F., Cao, X., Shi, X., Long, Z., Liu, Y., & Lei, M. (2022). A Machine Learning–Based model to predict early death among bone metastatic breast cancer patients: A large cohort of 16,189 patients. Frontiers in Cell and Developmental Biology, 10. Scopus. https://doi.org/10.3389/fcell.2022.1059597
Xu, J., Rao, X., Lu, W., Xie, X., Wang, X., & Li, X. (2022). Noninvasive Predictor for Premalignant and Cancerous Lesions in Endometrial Polyps Diagnosed by Ultrasound. Frontiers in Oncology, 11. Scopus. https://doi.org/10.3389/fonc.2021.812033
Yang, L., Chang, J., He, X., Peng, M., Zhang, Y., Wu, T., Xu, P., Chu, W., Gao, C., Cao, S., & Kang, S. (2022). PET/CT-based radiomics analysis may help to predict neoadjuvant chemotherapy outcomes in breast cancer. Frontiers in Oncology, 12. Scopus. https://doi.org/10.3389/fonc.2022.849626
Yang, L., Zhang, Z., Li, J., Chen, M., Yang, J., Fu, J., Bu, H., Tang, S., Liu, Y., Li, H., Li, X., Xu, F., Teng, X., Yang, Y., Ma, Y., Guo, S., Wang, J., & Guo, D. (2018). A Decision Tree-based prediction model for fluorescence in situ hybridization HER2 gene status in HER2 immunohistochemistry-2+ breast cancers: A 2538-case multicenter study on consecutive surgical specimens. Journal of Cancer, 9(13), 2327–2333. Scopus. https://doi.org/10.7150/jca.25586
Yue, W., Wang, Z., Chen, H., Payne, A., & Liu, X. (2018). Machine Learning with applications in breast cancer diagnosis and prognosis. Designs, 2(2), 1–17. Scopus. https://doi.org/10.3390/designs2020013
Zhao, L., Xie, S., Zhou, B., Shen, C., Li, L., Pi, W., Gong, Z., Zhao, J., Peng, Q., Zhou, J., Peng, J., Zhou, Y., Zou, L., Song, L., Zhu, H., & Luo, H. (2022). Machine Learning Algorithms Identify Clinical Subtypes and Cancer in Anti-TIF1γ+ Myositis: A Longitudinal Study of 87 Patients. Frontiers in Immunology, 13. Scopus. https://doi.org/10.3389/fimmu.2022.802499
Zhang, Y., Li, J., Fan, Y., Li, X., Qiu, J., Zhu, M., & Li, H. (2019). Risk factors for axillary lymph node metastases in clinical stage T1-2N0M0 breast cancer patients. Medicine (United States), 98(40). Scopus. https://doi.org/10.1097/MD.0000000000017481
Zhang, Y., Zhou, Y., Mao, F., Yao, R., & Sun, Q. (2020). Ki-67 index, progesterone receptor expression, histologic grade and tumor size in predicting breast cancer recurrence risk: A consecutive cohort study. Cancer Communications, 40(4), 181–193. Scopus. https://doi.org/10.1002/cac2.12024
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Hak publikasi dan pemanfaatan karya intelektual pada jurnal ini menjadi milik penuh penerbit, sedangkan hak moral menjadi milik penulis.
- Aspek legal formal akses dan pemanfaatan setiap artikel JoDIS tunduk di bawah lisensi Creative Commons Atribusi-Berbagi Serupa (CC BY-SA), yang berarti bahwa konten jurnal dapat dimanfaatkan secara bebas dan wajar (fair use) dalam bentuk serupa bahkan untuk kepentingan komersial.
- Untuk menghindari tindakan malpraktik publikasi dan plagiarisme penerbitan artikel, penulis diminta mengisi dan menandatangani pernyataan hak cipta pada Surat Pernyataan Keaslian Naskah dan Copyright Transfer.